
LTE PHY Layer Vulnerability Analysis and Testing
Using Open-Source SDR Tools

Raghunandan M. Rao∗, Sean Ha∗, Vuk Marojevic∗, Jeffrey H. Reed∗
∗Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, Virginia, USA
Email: {raghumr, seanha65, maroje, reedjh}@vt.edu

Abstract—This paper provides a methodology to study the
PHY layer vulnerability of wireless protocols in hostile radio en-
vironments. Our approach is based on testing the vulnerabilities
of a system by analyzing the individual subsystems. By targeting
an individual subsystem or a combination of subsystems at a time,
we can infer the weakest part and revise it to improve the overall
system performance. We apply our methodology to 4G LTE
downlink by considering each control channel as a subsystem.
We also develop open-source software enabling research and
education using software-defined radios. We present experimental
results with open-source LTE systems and shows how the differ-
ent subsystems behave under targeted interference. The analysis
for the LTE downlink shows that the synchronization signals
(PSS/SSS) are very resilient to interference, whereas the downlink
pilots or Cell-Specific Reference signals (CRS) are the most
susceptible to a synchronized protocol-aware interferer. We also
analyze the severity of control channel attacks for different LTE
configurations. Our methodology and tools allow rapid evaluation
of the PHY layer reliability in harsh signaling environments,
which is an asset to improve current standards and develop new
robust wireless protocols.

Index Terms – Long-term Evolution (LTE); Methodology;
Protocol-aware Jamming; Software-Defined Radio (SDR); Open
source tools.

I. INTRODUCTION

Wireless infrastructure and technology is a vital resource to
the economy and defense of the nation, and its protection is
becoming increasingly important. While the commercial sector
continues to increase the use of cellular networks for Internet
access, public safety networks and the military plan to leverage
commercial 4G cellular technology for their communication
needs in emergency situations. The Internet of Things (IoT)
will also impact the number of devices connecting to the
cellular network. Even though the architecture of 5G is still
an open question, there will be key differences with regards to
many characteristics of 4G technology such as the ability to
flexibly use spectrum; order of magnitude reduction in latency;
and, perhaps most importantly, improved security and privacy
[1].

Wireless communication networks provide a multitude of
critical and commercial services and serve an ever increasing
number of users. Ultra-reliable and secure wireless networks
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are necessary for national security and public safety, in order to
provide efficient situation assessment, time-critical assistance
and swift response to potential threats. This is also crucial for
autonomous vehicular networks and unmanned aerial systems,
where even a partial breakdown can have disastrous conse-
quences.

Security and privacy has always been an evolving problem
in the area of wireless communications since the days of
analog 1G cellular networks. Each cellular generation has
undergone its share of research and development related to
wireless network attacks and countermeasures because each
new feature introduced can have a potential vulnerability that
can be exploited by an attacker. Different types of attacks to
wireless networks have been the topic of research for several
years [2]-[3].

Lazos et al. [4] propose a randomized distributed channel
establishment scheme based on frequency hopping to address
the problem of control channel jamming in ad-hoc networks.
Bicakci et al. [5] focus on combating Denial of Service (DoS)
attacks in 802.11 devices using practical hardware, software
and firmware solutions. Liu et al. [6] develop a time-delayed
broadcast scheme that partitions the broadcast operation into
a series of unicast transmissions for spread spectrum systems
with insider threats. Chiang et al. [7] introduce a code-
tree system for circumventing cross-layer jamming attacks in
wireless broadcast networks. Hidden Markov Models (HMMs)
are adopted in [8] to characterize the sensing behaviors of le-
gitimate and malicious users in collaborative spectrum sensing
settings.

LTE is prone to protocol-aware interference, since the
standards documentation is openly available. There has been
prior work related to RF Jamming of LTE signals. Kakar et
al. [9] investigate the performance of the Physical Control
Format Indicator Channel (PCFICH) under harsh wireless
conditions and propose strategies to mitigate interference on
the PCFICH. Lichtman et al. [10] consider the problem of
targeted interference on the Physical Uplink Control Channel
(PUCCH) and propose detection and mitigation strategies to
counter protocol-aware jammers. Labib et al. [11] introduce
and demonstrate LTE control channel spoofing, which refers
to spoofing by a fake eNodeB by transmission of a partial
LTE downlink frame. Denial of Service (DoS) was found to be
the result of transmission of the partial LTE downlink frames
containing only the fake control channels, at a relatively higher



power level w.r.t. the legitimate eNodeB. The authors also
propose mitigation strategies that required simple modification
to the cell selection process of LTE. In [12], a comprehensive
threat assessment of LTE/LTE-A is provided, highlighting
the vulnerabilities of various LTE physical channels and
signals. A survey of mitigation techniques against various
jamming/spoofing attacks is also provided.

This paper provides a methodology for assessing the PHY
layer vulnerabilities of cellular networks. Our analysis uses
LTE as an example, but the methodology applies to many
other present and future protocols. The contribution of paper
is threefold: we provide

1) a methodology for PHY layer testing of wireless proto-
cols,

2) open-source software enabling research and education
using software-defined radios (SDRs), and

3) empirical results with open-source SDR-based 4G LTE
systems.

The rest of the paper is organized as follows: Section II
reviews the related work on PHY layer vulnerability and
provides background on LTE control channels. Section III
introduces our methodology, Section IV provides experimental
results and analysis for LTE. Section V concludes the paper.

II. CONTROL CHANNELS IN THE LTE DOWNLINK

Control channels in wireless networks are essential for
providing the capability for the system to operate properly
and efficiently. Using LTE as an example below we briefly
review some of the important Downlink (DL) LTE physical
control channels that are relevant for the experimental analysis
discussed in this work. Note that in LTE the Base Station is
referred to as the evolved NodeB (eNB) and the user terminal
is referred to as the user equipment (UE).

Primary and Secondary Synchronization Signals (PSS/SSS):
LTE uses two synchronization signals: the Primary Synchro-
nization Signal (PSS) and Secondary Synchronization Signal
(SSS). The PSS and SSS are broadcast by the eNB for slot and
frame synchronization. The PSS is constructed from Zadoff-
Chu sequences due to the strong Constant Amplitude Zero
Autocorrelation (CAZAC) properties.

The SSS is constructed from two maximal length sequences
(M-sequences). As all communication between the UE and
eNB requires time synchronization, disrupting the PSS or SSS
will not cause an immediate Denial of Service (DoS), but will
instead prevent new UEs from accessing the cell and idle UEs
from re-synchronizing with the cell.

Physical Broadcast Channel (PBCH): The PBCH contains
the Master Information Block (MIB) which informs the UE
about the downlink bandwidth, resource length of the Hybrid
ARQ (HARQ) Indicator Channel (PHICH), and the System
Frame Number (SFN) for frame synchronization. The PBCH
is mapped to the central 72 subcarriers of four consecutive
OFDM symbols per frame. It is QPSK modulated with a 16-
bit CRC, but with an effective coding rate of 1/48.

Physical Downlink Control Channel (PDCCH): The PD-
CCH carries critical control information, such as UE resource
allocation, modulation and coding scheme (MCS) of user
data, information about the HARQ parameters and precoding
matrices for MIMO. It is QPSK modulated with rate-1/3 con-
volutional coding and occupies the first few OFDM symbols
of each subframe. During the initial cell access procedure,
it informs the UE of the first System Information Block
(SIB1), without which the UE will be unable to complete the
cell attachment process. Additionally, after cell attachment, it
would be impossible for the UE to obtain service and decode
its data if the PDCCH is improperly decoded.

Physical Control Format Indicator Channel (PCFICH):
The PCFICH contains information regarding the size of the
PDCCH and is sent at the beginning of each subframe. It
contains the Control Format Indicator (CFI) which is 2 bits in
length, and is encoded using a code rate of 1/16. Therefore
corrupting the PCFICH will also corrupt detection of the
PDCCH at the UE.

Cell-Specific Reference Signals (CRS): The CRS carries
downlink pilot symbols that are used or channel estimation and
quality assessment as well as equalization. CRS are QPSK-
modulated and use a Gold sequence of length 31, which is
initialized using the cell ID value. The CRS symbols are
distributed sparsely in time and frequency, occupying about
5% of the Resource Elements (REs). The first position k0 of
the CRS in the LTE DL grid is determined by the Physical Cell
Identity (PCI) Nc,ID ∈ {0, 1, · · · , 503}, by the relation k0 =
Nc,ID mod 6 (assuming the range of k0 ∈ {0, 1, · · · , 5}).

III. PHY LAYER VULNERABILITY ASSESSMENT
METHODOLOGY

The methodology that we develop is based on testing
the vulnerabilities of a system by analyzing the individual
subsystems. By targeting a specific subsystem or a specific
combination of subsystems at a time, we can infer the weakest
component and revise it to improve the overall system robust-
ness. Hence, we propose tools for assessing the individual
system components and metrics for evaluation. Here, we
regard the LTE control channel(s) to be the subsystem(s), for
the purpose of analysis. Although we present the tools and
metrics for LTE, rather than in an abstract way, the concepts
are applicable for other wireless protocols as well.

A. Open-Source Software Tools

We propose a parametric framework for interference gener-
ation by using the same waveform as the target system. This
ensures that there is high correlation in the protocol signaling
between the interference and the target waveform(s). In the
case of LTE, individual subcarriers and OFDM symbols can be
allocated/blanked to rapidly generate wideband, narrowband,
and protocol-aware interference over any portion of the DL
LTE time-frequency grid. Note that other wireless standards,
including IEEE 802.11xx and emerging IoT standards, use
OFDM. Fig. 1 illustrates the general framework for OFDM-
based parametric interference generation. It allows generating



Fig. 1. OFDM-based parametric interference generation.

asynchronous and synchronous interference waveforms that
we build from the open source LTE library srsLTE [13]. The
srsLTE library implements the LTE uplink and downlink wave-
forms and supports commercial off-the shelf hardware such
as Universal Software Radio Peripherals (USRPs). Broadly,
we classify the interference waveforms based on the time-
synchronization requirements of the jammer w.r.t. the target:

1) Asynchronous Interference Waveforms: The asyn-
chronous interference waveform generates interference on
specific subcarriers. This type of interference can be of certain
duration/duty cycle or continuous or discontinuous in time.
We can use this setup to generate any interference to LTE that
does not need accurate time alignment with the LTE frame. We
can also generate a fake PSS and/or SSS signal (for example,
to execute PSS/SSS spoofing as in [11]) by replacing OFDM
symbols with LTE synchronization sequences. As an example,
the spectrum of a 1.4 MHz interference waveform with three
blocks of active subcarriers is shown in Fig. 2. Assuming the
subcarrier indices k ∈ {0, 1, · · · , 71}, the jammer transmits
only on subcarriers kj such that kj ∈ {0, 1, · · · , 35} (540 kHz
wide), kj ∈ {49, 50, · · · , 59} (165 kHz wide) and kj ∈ {71}
(15 kHz wide).

2) Synchronous Interference Waveforms: Transmitting on
top of specific physical channels requires synchronization with
the network to determine where the physical channels exist
in time. Therefore, we design an interferer that (1) acts as
a receiver and synchronizes with the eNB, in this case by
acquiring the legitimate PSS and SSS of the LTE cell and
(2) synchronously transmits its interference waveform to the
target. A configurable timing offset can be specified to account
for transmission and other delays. Fig. 3 illustrates the syn-
chronous interference waveform which targets the PSS/SSS.

B. Metrics for Performance Evaluation

In order to compare the impact of different control channel
attacks, we need a uniform metric that captures the differences
between the control channels. In this regard, we devise a
metric based on the (a) Jammer to Signal power ratio (JSR)
values, (b) control channel occupancy fraction in the LTE
Frame, and (c) control channel relative power w.r.t. the data

Fig. 2. Asynchronous interference waveform generation.

Fig. 3. Synchronous interference waveform: eNB signals which, for illustra-
tion purposes, consist of the PSS/SSS, the PBCH, and the CRS only (top and
bottom) and synchronous PSS/SSS interference (bottom).

channel. Equivalent metrics apply for other wireless standards
and additional metrics may need to be specified for the specific
analysis. For LTE, we define the following quantities:

1) Jammer to Signal Ratio per resource element (JSRRE),
2) Jammer to Signal Ratio per Frame (JSRF ), and
3) Relative power w.r.t. the Physical Downlink Shared

Channel (PDSCH) (ρPDSCH).

1) JSRRE: It is defined as the ratio of the jammer power
to that of the LTE signal, assuming that all the LTE resource
elements (REs) have the same transmit power. We also con-
sider that the jammer allocates equal power on all subcarriers
at all times.



TABLE I
INDICATORS OF ALL CONSIDERED JAMMER STRATEGIES.

Target Periodicity Error Flag
Barrage Subframe PDCCH error/PCFICH error/synch error/

PBCH error
PSS/SSS Frame If frame synchronized: sync loss. If frame

does not synchronize: Unable to sync
PDCCH Subframe Decoded RNTI ̸= SENTVALUE
PBCH Frame Decoded MIB ̸= Default configuration
PCFICH Subframe Decoded CFI ̸= 2

CRS Subframe PDCCH error/PCFICH error/synch error/
PBCH error

2) JSRF : In our experiments, the jammer is targeting spe-
cific control channels, all of which occupy different fractions
of the total number of REs per LTE DL frame. To account for
this, we define JSRF given by

JSRF = JSRRE × NT,F

Ntot,F
, (1)

where NT,F denotes (the number of REs allocated to the
control channel per LTE frame, and Ntot,F the total number
of REs per LTE frame.

3) ρPDSCH : LTE allocates different power levels to dif-
ferent control channels. ρPDSCH is defined as ρPDSCH =

PT

PPDSCH
, where PT is the power allocated by the LTE

transmitter to the control channel, and PPDSCH is the power
allocated to the PDSCH in the same frame.

Therefore, these three factors determine the overall jammer
to signal ratio JSRN given by

JSRN = JSRRE × NT,F

Ntot,F
× PT

PPDSCH
. (2)

The above relation is adapted from [14] and is modified to
account for the non-uniformity in power allocation for all
control channels. Since JSRN represents the overall power
requirements of the jammer w.r.t. that of the LTE DL signal,
we use it as the metric to compare the relative robustness of
the control channels.

In order to compare the robustness of each control channel
to targeted interference, we also need to define events at
the receiver that constitute a successful jamming attack. In
addition to this, we also need to set thresholds for the prob-
ability of error or error rate Perr, beyond which the control
channel is said to be irreversibly corrupted. In essence, such a
scenario will lead to the UE operating with corrupted control
information that can cause severe system level issues, and in
the worst case, DoS. Table I describes the event (i.e. error flag
in libLTE) that indicates a successful LTE DL jamming attack.

IV. LTE EXPERIMENTAL RESULTS AND ANALYSES

A. Experimental Setup using Open-Source SDR Tools

Fig. 4 shows the experimental setup on the Virginia Tech
LTE Testbed [15] which features three Universal Software
Radio Peripherals (USRPs) to emulate the LTE eNB, UE
and the protocol-aware jammer. The jammer was provided a

Fig. 4. Experimental setup of the jamming experiments.

PSS/SSS from the eNB in order to synchronize the jamming
signal with the UE when needed. The LTE DL signal and
the synchronous jamming signal are combined using radio
frequency (RF) power combiners. Attenuators in each RF path
provide a means to control the JSR. RF cables were used to
connect the components and hence, the RF environment was
low-noise. Therefore, the resulting LTE system performance
is interference-limited.

For each value of JSR, the error rates were calculated after
subjecting each considered DL physical control channel to
105 trials of targeted interference. Each trial composed of
transmission of 1 subframe (for PCFICH, PDCCH, CRS and
Barrage jamming schemes) and 1 frame (for PSS/SSS and
PBCH jamming schemes). For each jamming scenario, the
error event is defined in Table I. The error rate for each channel
Perr is defined as the ratio of the the number of frames (or
subframes) for which the error flag (defined in Table I) is
active (Nerr), to the total number of frames (or subframes)
transmitted (Ntrial). The error rate was calculated using the
relation Perr = Nerr/Ntrial. The JSR was computed using
(2), where the term ρPDSCH was computed for each jamming
strategy experimentally, and is tabulated in Table II.

We define the error threshold Perr,th to be the value beyond
which Denial of Service (DoS) occurs, whose values are
summarized in Table III. The reasons for the choice of Perr,th

for each strategy is given below:

1) PBCH has a very low coding rate of 1/48, and is
spread across 4 OFDM frames. Hence, it is robust
against interference and we set a high error threshold
of Perr,th = 0.9.

2) PSS/SSS is comprised of interference-resilient signals
with very strong correlation properties [14]. Hence we
set an error threshold value of Perr,th = 0.5.

3) PCFICH carries the locations of the PDCCH, and PD-
CCH has a fairly high code-rate of 1/3. Hence, an error
threshold of Perr,th = 0.1 is considered to be sufficient
to disrupt these channels.

4) CRS is used for channel estimation and equalization
which is crucial to decode all the other control channels.
The aggregate Perr,th cannot be greater than that of all
other critical DL control channels and hence, we set
Perr,th = 0.1. The same reasoning applies for barrage
jamming as well.

The overall jammer to signal noise ratio (JSRN,DoS) repre-



TABLE II
EMPIRICALLY MEASURED VALUES OF ρPDSCH .

Jamming Strategy ρPDSCH (dB)
Barrage 0
PSS/SSS -5
PDCCH -5
PBCH -2
PCFICH -8
CRS -10

Fig. 5. Error rate as a function of JSR for the jamming experiments using
open-source SDR tools for a 1.4 MHz FD LTE signal.

sents the JSR value that results in Perr ≥ Perr,th, which in
turn results in DoS.

B. Analysis of DL Jamming Results

The jamming experiments were performed for all six down-
link jammer strategies and the results are shown in Fig. 5. The
necessary JSR to jam each physical channel is summarized
in Table III. We qualitatively comment on the complexity of
the jamming attack for a 1.4 MHz FD LTE system, based on
the degree of synchronization required to jam the subsystem
and the contiguity of targeted REs comprising the subsystem.
We see that the PSS/SSS is the least vulnerable DL physical
channel. This is understandable since both the PSS and SSS
use very strong correlation sequences (Zadoff-Chu and M-
sequence respectively) that are inherently robust against noise
and interference by design. Even though PSS and SSS are very
sparse, the jammer needs more power than the LTE DL signal
to corrupt them to the point of synchronization loss/inability
to synchronize and therefore, DoS.

The PBCH is also resilient to jamming, since (a) it provides
only basic initial information, and (b) it has a very low coding
rate (cf. Section II). The PCFICH is robust to interference
because of strong encoding, but its sparsity makes it suscepti-
ble to jamming relative to PDCCH. However, since jamming
the PCFICH has the same outcome as jamming the PDCCH,
the 3 dB gain of PCFICH w.r.t. PDCCH jamming is deemed
infeasible for the jammer since the PCFICH’s sparsity makes

TABLE III
LTE DL PHYSICAL CHANNEL VULNERABILITIES FOR 1.4 MHZ FD-LTE.

Target Fraction Complexity Perr,th to JSRN,DoS

of REs cause DoS (dB)
Barrage 100 % Very Low 0.1 -10
PSS/SSS 1.23 % Medium 0.5 5
PDCCH 23.4 % Medium 0.1 -16
PBCH 2.38 % Low 0.9 -3
PCFICH 0.2 % High 0.1 -19
CRS 4.76 % High 0.1 -26

Fig. 6. Error rate as a function of JSR for the jamming experiments using
open-source SDR tools for a 10 MHz FD LTE signal.

the jamming attack more complex and countermeasures have
been proposed in the literature [9].

We see that CRS, in the case of a perfectly synchronized
jamming attack, is highly vulnerable. This is due to (a) the
sparsity of the CRS in terms of the fraction of REs per OFDM
frame and (b) the dependence of all the other critical control
channels on accurate channel estimates. In practice, perfect
synchronization is difficult to achieve for a sparse and non-
contiguously distributed signal such as the CRS. However, the
jammer can target CRS subcarriers instead of CRS REs, which
is a very simple strategy since the CRS subcarrier locations
depend on the cell ID Nc,ID and remains constant for all users
of the cell. In this case the jammer need not synchronize with
its target, thus reducing the complexity of the attack at the
cost of a higher JSR.

It is clear that the PDCCH should have the highest priority
for anti-jamming countermeasures because the PDCCH can
be easily targeted with a relatively low JSR. CRS follows
close behind, having by far the lowest required JSR to corrupt,
but a much higher complexity. Similarly, the PBCH and,
especially PSS/SSS are not high priority for anti-jamming;
while an attack may theoretically cause complete DoS by
targeting these subystems, the attackers require nearly as much
power as barrage jamming, making them less practical from
an attacker’s perspective.



Fig. 7. JSRN required versus LTE bandwidth to cause Denial of Service
for all considered control channel attacks.

C. Vulnerability Analysis for Higher LTE Bandwidths

The results discussed so far apply only to a LTE bandwidth
of 1.4 MHz. For higher LTE bandwidths, it is important to note
that the following control channels lie within the central 72
subcarriers of the LTE frame for all bandwidths, (a) PSS/SSS,
(b) PDCCH, (c) PBCH and (d) PCFICH. Hence, these control
channels can be targeted by the jammer by confining its power
within the central 72 subcarriers of the LTE signal. Hence, for
cases (a)-(d) the required JSR (JSR(BW )

N,DoS) to cause DoS for
a LTE system bandwidth BW can be written as

JSR
(BW )
N,DoS = JSR

(1.4 MHz)
N,DoS − 10 log10

( BW

1.4 MHz

)
. (3)

However, a jammer targeting the CRS will need to occupy
the entire bandwidth, and the same is true for a barrage jammer
as well. Therefore, the JSRN requirements for all strategies
except CRS and barrage jamming change as a function of the
LTE bandwidth as described in equation (3). Fig. 6 shows the
error rate as a function of the JSR for a 10 MHz FD-LTE
system.

Fig. 7 shows the variation of JSRN,DoS as a function of
LTE system bandwidth (BW ) for each jamming strategy. We
see that (a) PSS/SSS will still be an inefficient attack for a
system bandwidth of 20 MHz, (b) PBCH jamming performs
better than barrage jamming only for BW ≥ 10 MHz, (c)
PCFICH jamming performs better than CRS jamming for
BW ≥ 10 MHz, and (d) PDCCH jamming, on the other hand
performs better than CRS jamming for BW ≥ 15 MHz. An
obvious way to increase the resilience of the system would be
to allocate the control channel REs (except the PSS/SSS) over
the entire LTE bandwidth. This would ensure that the jammer
would have to resort to wideband signaling to disrupt the LTE
control channels.

V. CONCLUSIONS

This paper has introduced a methodology for analyzing
the PHY layer vulnerability of wireless protocols. We have
developed a software suite for introducing protocol-aware
interference to a system. Our software is applicable to OFDM-
based protocols. We applied it to target the LTE RF link

and showed how different subsystems of LTE react differ-
ently to protocol-aware interference. We showed that the LTE
synchronization signals (PSS/SSS) are the most resilient to
synchronized jamming. We also saw that CRS, PCFICH and
PDCCH are the most vulnerable to protocol-aware jamming.
The results presented in this paper are based on open-source
SDR-based LTE systems. Other systems will need different
metrics and software for testing, but the proposed methodology
can be applied for (1) methodical testing, (2) improving the
robustness of the subsystem and hence the entire system and
(3) designing of control channels to achieve a desired level of
robustness.

As LTE evolves, these vulnerabilities will need to be taken
into consideration while applying LTE for military and public
safety networks, and for designing interference-resilient next-
generation wireless protocols. Tradeoffs will be necessary to
balance efficiency, system complexity and robustness to smart
attackers. This will continue to be an important research area
that will significantly contribute to the architecture of 5G
wireless networks.
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